Math, asked by dhanapriya13, 8 months ago

3. Factorise:3x^2+x-1 by splitting the middle term.

Answers

Answered by RISH4BH
147

\large{\underline{\underline{\red{\sf{Given:}}}}}

  • \tt{A\: quadratic\: polynomial\:is\: given\:to\: us.}
  • \tt{The\: Polynomial\:is\:3x^2+2x-1.(correct)}

\large{\underline{\underline{\red{\sf{To\:Find:}}}}}

  • \tt{The\:factorised\:form\:of\: polynomial.}

\large{\underline{\underline{\red{\sf{Solution:}}}}}

\underline{\purple{\bf{\mapsto How\:to\:do\: middle\: term\: splitting?}}}

\tt{Here\:are\:the\:steps:-}

\tt{\green{Step\:1:-}\:\:\orange{Multiply\: constant\:term\:with\: coefficient\:of\:x^2.}}

\tt{\green{Step\:2:-}\:\:\orange{Split\: middle\:term\:in\:such\: way\:that\:it\:is\:equal\:to\:above\: product.}}

\tt{\green{Step\:3:-}\:\:\orange{Take\:out\: common\: terms\:by\: grouping\:them\:properly.}}

\tt{\green{Step\:4:-}\:\:\orange{Then\:from\: obtained\: two\: terms\:take\:out\: common\:term.}}

\underline{\purple{\bf{\mapsto Following\:\:the\: above\:steps:}}}

\tt{:\leadsto 3x^2+2x-1. }

\tt{:\leadsto 3x^2+3x-x-1}

\sf{\green{[Splitting\: middle\:term\:into\:3x\:and\:(-x.)]}}

\tt{:\leadsto 3x(x+1)-1(x+1) }

\sf{\green{[Taking\:out\: common\:terms\:by\:grouping.]}}

\pink{\tt{:\leadsto (3x-1)(x+1) }}

\sf{\green{[Taking\:out\: common\: terms \:which\:is\:(x+1).]}}

\underline{\purple{\tt{\hookrightarrow Hence\:the\:factorised\:form\:is\:(3x-1)(x+1).}}}

Similar questions
Math, 11 months ago