3
Find d^2y/dx^2, if y = x^3+
tanx
Answers
Answered by
3
Answer:
6x + 2sec²x.tanx
Step-by-step explanation:
dy/dx = d(x³ + tanx)/dx
= dx³/dx + dtanx/dx
= 3x² + sec²x
Further,
d²y/dx² = d(3x² + sec²x)/dx
= d(3x²)/dx + d(sec²x)/dx
= 3(2)x + 2sec²x.tanx
= 6x + 2tanx.sec²x
for differentiating sec²x wrt x:
=> d(sec²x)/dx , let secx = t,
=> d(t²)/dx
=> d(t²)/dt * dt/dx
=> 2t * dt/dx
=> 2(secx) * d(secx)/dx
=> 2secx * secx.tanx
=> 2sec²xtanx
Similar questions