Math, asked by aaronmanoj2004, 9 months ago


3) Find
domain and range of the
function f(x)=√100-x².

Answers

Answered by sharmamishti624
1

hope this will help you

please mark it as BRAINLIEST!!

Attachments:
Answered by pulakmath007
3
  • Domain of the function = [ - 10 , 10 ]

  • Range of the function = [ 0 , 10 ]

Given :

\displaystyle \sf The \: function \:  \:  f(x) =  \sqrt{100 -  {x}^{2} }

To find :

The domain and range of the function

Solution :

Step 1 of 3 :

Write down the given function

Here the given function is

\displaystyle \sf  f(x) =  \sqrt{100 -  {x}^{2} }

Step 2 of 3 :

Find domain of the function

\displaystyle \sf  Let \:  \: y = f(x) =  \sqrt{100 -  {x}^{2} }

\displaystyle \sf{ \implies }y  =  \sqrt{100 -  {x}^{2} }

\displaystyle \sf{ \implies } {y}^{2}  = 100 -  {x}^{2}

Now

\displaystyle \sf   {y}^{2}  \geqslant 0

\displaystyle \sf{ \implies }100 -  {x}^{2}  \geqslant 0

\displaystyle \sf{ \implies } {x}^{2}   \leqslant 100

\displaystyle \sf{ \implies } - 10 \leqslant x \leqslant 10

\displaystyle \sf{ \implies }x \in [ - 10 , 10 ]

Hence domain of the function = [ - 10 , 10 ]

Step 3 of 3 :

Find range of the function

\displaystyle \sf  y  =  \sqrt{100 -  {x}^{2} }

\displaystyle \sf{ \implies } {y}^{2}  = 100 -  {x}^{2}

\displaystyle \sf{ \implies } {x}^{2}  = 100 -  {y}^{2}

Now for a real number x ,

\displaystyle \sf   {x}^{2}  \geqslant 0

\displaystyle \sf{ \implies }100 -  {y}^{2}  \geqslant 0

\displaystyle \sf{ \implies } {y}^{2}   \leqslant 100

But y ≥ 0

\displaystyle \sf{ \implies } 0 \leqslant y^2 \leqslant 100

\displaystyle \sf{ \implies } 0 \leqslant y \leqslant 10

\displaystyle \sf{ \implies }y \in [ 0 , 10 ]

Hence range of the function = [ 0 , 10 ]

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if given f(x) = 6(1 - x), what is the value of f(-8)?

https://brainly.in/question/22543444

2. let f and g be thwe function from the set of integers to itself defined by f(X) =2x +1 and g (X)=3x+4 then the compositi...

https://brainly.in/question/22185565

#SPJ3

Similar questions