Math, asked by gamingkilling039, 1 day ago

3. Find the area enclosed by each of following fig.



please don't scam​

Attachments:

Answers

Answered by bhaskararaoboddepall
0

Step-by-step explanation:

10×50=500

10×10=100

10×10=100

5×5=25

5×5=25

5×5=25

5×5=25(+)

_____

800

Answered by DeeznutzUwU
0

        \text{\huge \bf \underline{Answer:}}

        \text{In the attachment we can see a figure with:}

        GH = DC = 50 \: cm

        HC = GD = 10 \: cm

        FE = AB = 20 \: cm

        \text{The entire length of the figure is 70}\:cm

        \text{It is also given that:}

        GDCH \text{ is a rectangle}

        GDE F \text{ is a trapezium}

        ABCH \text{ is a trapezium}

        \text{We have to find the area enclosed by each figure and}\\\text{we have to find the total area enclosed by the complete figure}

        \text{Area of rectangle} = \text{Length}\times \text{Breadth}

\implies \: \text{Area }GDCH = DC \times GD

\implies \: \boxed{\boxed{\text{Area }GDCH = 10 \times 50 = 500 \: cm^{2}}}

        \text{Since, }GDE F \text{ and }ABCH \text{ are congruent trapeziums}\\\text{their heights and areas are the same}

\implies \: \text{Area }GDE F = \text{Area }ABCH

\implies \: DN = HM

         \text{In }GDE F

        DN = \text{height of trapezium }GDE F

        DN + HM= {\text{Length of the entire figure} - GD}

\implies \: 2DN = {\text{Length of the entire figure} - GD}

\implies \: DN = \dfrac{\text{Length of the entire figure} - GD}2

\implies \: DN = \dfrac{70 - 50}{2}

\implies \: DN = \dfrac{20}{2}

\implies \: DN =HM =  10 \: cm

        \text{Area of trapezium} = \dfrac12(\text{Sum of parallel side})\times (\text{Height})

\implies \:\text{Area }GDE F = \dfrac12 ( GD + EF) \times (DN)

\implies\: \text{Area }GDE F = \dfrac12 (10 + 20) \times (10)

\implies\: \text{Area }GDE F = \dfrac12 (30) \times (10)

\implies \: \text{Area }GDE F =  (30) \times (5)

\implies \: \boxed{\boxed{\text{Area }GDE F = \text{Area }ABCH =  150 \: cm^{2}}}

        \text{Area of entire figure} = \text{Area }GDCH + \text{Area }GDE F+ \text{Area }ABCH

\implies \: \text{Area of entire figure} = 500 + 150+ 150

\implies \: \boxed{\boxed{\text{Area of entire figure} = 800 \: cm^{2}}}

       

Attachments:
Similar questions