Math, asked by pinky2325, 10 months ago

3) Find the co-ordinates of the points which divides the line segment A(-4,4) and
(3,7) into four equal parts.​

Answers

Answered by MaheswariS
1

\textbf{Given:}

A(-4,4)\;\text{and}\;B(3,7)

\textbf{To find:}

\text{The co-ordinates of the points which divides AB into four equal parts}

\textbf{Solution:}

\text{Let P be the midpoint of AB}

\text{Then, P is}\;(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})

\implies\;P\,(\frac{-4+3}{2},\frac{4+7}{2})

\implies\bf\;P\,(\frac{-1}{2},\frac{11}{2})

\text{Let Q be the midpoint of AP}

\text{Then, Q is}\;(\frac{-4+\frac{(-1)}{2}}{2},\frac{4+\frac{11}{2}}{2})

\implies\,Q\,(\frac{\frac{-9}{2}}{2},\frac{\frac{19}{2}}{2})

\implies\bf\,Q\,(\frac{-9}{4},\frac{19}{4})

\text{Let R be the midpoint of BP}

\text{Then, R is}\;(\frac{3+\frac{(-1)}{2}}{2},\frac{7+\frac{11}{2}}{2})

\implies\,R\,(\frac{\frac{5}{2}}{2},\frac{\frac{25}{2}}{2})

\implies\bf\,R\,(\frac{5}{4},\frac{25}{4})

\therefore\textbf{The points which divide AB into four equal parts are}

\bf(\frac{-1}{2},\frac{11}{2}),\,(\frac{-9}{4},\frac{19}{4}),\textbf{and}\,\bf(\frac{5}{4},\frac{25}{4})

Find more:

The line segment joining the points (3,-1) and (-6,5) is trisected. find the coordinate of the point of trisection.

https://brainly.in/question/8416219

Similar questions