3. Find the cube roots of (-2 + 2i) and express them in the form a + bi.
Answers
Answer:
there fore -2 = a
2 = b
Step-by-step explanation:
We know that , -2 + 2i = ( -2 , 2 )
= -2( 1 , 0 ) + 2( 1 , 0 )
Given : (-2 + 2i)
To Find : cube roots of (-2 + 2i)
Solution:
a + bi = ∛(-2 + 2i)
Taking cube on both sides
=> (a + bi)³ = -2 + 2i
=> a³ + (bi)³ + 3abi(a + bi) = -2 + 2i
=> a³ - ib³ + 3a²bi - 3ab² = - 2 + 2i
=> (a³ - 3ab²)+ i(-b³ + 3a²b) = - 2 + 2i
a³ - 3ab² = - 2
-b³ + 3a²b = 2
Adding both
(a³ - b³) + 3ab(a - b) = 0
=> (a - b) (a² + b² + ab) + 3ab(a - b) = 0
=> (a - b) (a² + b² + 4ab) = 0
=> (a - b) = 0
=> a = b
a = b
a³ - 3ab² = - 2
=> a³ - 3a³ = -2
=> -2a³ = - 2
=> a³ = 1
=> a = 1
=> b = 1
a + bi = 1 + i
cube roots of (-2 + 2i) = 1 + i
Learn More
Geometrically, the modulus of a complex number represents its ...
brainly.in/question/21239115
Every real number is a complex number. Proof - Brainly.in
brainly.in/question/18312643