Math, asked by tanistar18, 3 months ago

3. Find the four roots of the equation z^4 +4 =0 and use them to factor z^4+ 4
into quadratic factors with real coefficients.​

Answers

Answered by suhail2070
1

Answer:

z =  - 1 + i \\ z = 1 - i \\ z =  - 1 + i \\ z = 1 - i

Step-by-step explanation:

 {z}^{4}  + 4 = 0 \\  \\   { ({z}^{2} })^{2}   -   {(2i)}^{2}  = 0 \\ ( {z}^{2}  - 2i)( {z}^{2}  + 2i) = 0 \\  {z}^{2}  - 2i = 0 \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  {z}^{2}   +  2i = 0 \\  {z}^{2}  = 2i \:  \:  \:  \:  \:  \:  \:  \:  {z}^{2}   =  - 2i \\  \\ z =  \sqrt{2}  \sqrt{i}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: z =  \sqrt{2}  \sqrt{ - i}  \\  \\ z =   + \sqrt{2} ( \frac{1}{ \sqrt{2} }  + i \frac{1}{ \sqrt{2} } ) \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  - \sqrt{2} ( \frac{1}{ \sqrt{2} }  + i \frac{1}{ \sqrt{2} } )\:   \:  \:  \:  \:  \:  \:  \: \:  \:  \: - \sqrt{2} ( \frac{1}{ \sqrt{2} }  + i \frac{1}{ \sqrt{2} } ) \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \\  -   \sqrt{2} ( \frac{1}{ \sqrt{2} }  - i \frac{1}{ \sqrt{2} } )  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ z = - 1 +  i \: \:  \:  \:  \: z = 1 - i  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  - 1  +  i \:  \:  \:  \:  \:  \:  \: z = 1 - i

Similar questions