Physics, asked by Knhf7259, 9 months ago

3. Find the length of a seconds’ pendulum at a place where g= 10ms-2, π =3.14)

Answers

Answered by Anonymous
10

SoLuTiOn :

To Find :

✏ Length of a second pendulum.

Concept :

✏ We know that, Time period of second pendulum = 2s

Formula :

✏ Formula of time period in terms of length of pendulum and gravitational acceleration is given by

 \star \:  \underline{ \boxed{ \bold{ \rm{ \pink{T = 2\pi \sqrt{ \frac{L}{g} }}}}}}  \:  \star

Terms indication :

✏ T denotes time period

✏ L denotes length of pendulum

✏ g denotes gravitational acceleration

Calculation :

 \mapsto \rm \: T = 2\pi \sqrt{ \frac{L}{g} }  \\  \\  \rightarrow \rm \: \cancel{2} = \cancel{2 }\times 3.14 \times  \sqrt{ \frac{L}{10} }  \\  \\  \rightarrow \rm \: L =  \frac{10}{ {(3.14)}^{2} }  \\  \\   \huge\star \:   \underline{ \boxed{ \bold{ \rm{ \purple{L = 1 \: m}}}}} \:  \star

Additional information :

✏ Time period is defind as time requires to complete one oscillation.

✏ Unit of time period is s.

Answered by Anonymous
16

\huge\bigstar{\underline{\sf{\green{Answer:-}}}}

\bigstar{\underline{\sf{\blue{Given:-}}}}

  • g → 10 m/s²
  • π → 3.14

The time required for one oscillation by a seconds pendulum is 2 seconds.

T = 2 s

T = 2\pi \sqrt{\frac{l}{g}} \\

\bigstar{\underline{\sf{\blue{Point\:to\: remember:-}}}}

  • l → length of the pendulum
  • T → Time period
  • g → acceleration due to gravity

\bigstar{\underline{\sf{\blue{Now:-}}}}

T² = 4 {\pi}^{2}  \frac{l}{g} \\

l = \frac{ {T}^{2} g}{4 {\pi}^{2} }  \\

l = \frac{ {2}^{2} × 10}{4 × {3.14}^{2}} \\

l = \frac{40}{39.43} \\

\large{\boxed{\sf{\blue{l = 1.01 m}}}}

_______________________________________________________________

Similar questions