Math, asked by kundususmita419, 4 months ago

3.
Find the perimeter of an equilateral triangle given its area is 100rootover3​

Answers

Answered by EliteZeal
31

A n s w e r

 \:\:

G i v e n

 \:\:

  • Area of equilateral triangle is 100√3 sq. unit

 \:\:

F i n d

 \:\:

  • Perimeter of the equilateral triangle

 \:\:

S o l u t i o n

 \:\:

Here in this question we are asked to calculate the perimeter of the equilateral triangle

 \:\:

To calculate perimeter we must know the sides

 \:\:

So,

 \:\:

Let the side of equilateral triangle be 's'

 \:\:

 \underline{\bold{\texttt{Area of equilateral triangle :}}}

 \:\:

 \sf  A = \sqrt 3 \times \dfrac { a ^2  } { 4 } ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • A = Area

  • a = Side of square

 \:\:

 \underline{\bold{\texttt{Area of equilateral triangle :}}}

 \:\:

Given that the area of equilateral triangle is 100√3

 \:\:

  • A = 100√3

  • a = s

 \:\:

Putting the above values in ⓵

 \:\:

 \sf  A = \sqrt 3 \times \dfrac { a ^2  } { 4 }

 \:\:

 \sf  100  \sqrt 3 = \sqrt 3 \times \dfrac { s^2  } { 4 }

 \:\:

 \sf  100 = \dfrac { s^2  } { 4 }

 \:\:

➜ s² = 100 × 4

 \:\:

➜ s² = 400

 \:\:

 \sf s = \sqrt { 400 }

 \:\:

➜ s = 20

 \:\:

  • Hence each side of the equilateral triangle is 20 units

 \:\:

 \underline{\bold{\texttt{Perimeter of  equilateral triangle :}}}

 \:\:

➠ 3a ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • a = Side

 \:\:

 \underline{\bold{\texttt{Perimeter of given equilateral triangle :}}}

 \:\:

  • a = 20

 \:\:

Putting the above value in ⓶

 \:\:

➜ 3a

 \:\:

➜ 3(20)

 \:\:

➨ 60 units

 \:\:

  • Hence the perimeter of equilateral triangle is 60 units

 \:\:

Similar questions