Math, asked by shomenivedita, 9 months ago

3. Find the product using the identity
(x + a) (x+6) = x + (a+b)x+ ab.
a. (2x – 7y) (2x + 8y)
b. 103 x 95
c. 505 x 502
d. (5p - 79) (5p - 79)​

Answers

Answered by saounksh
2

ANSWERS

ғᴏʀᴍᴜʟᴀ

  • (x + a) (x+b)

 \:\:\:\:\:\:\:= x^2 + (a+b)x+ ab

❤︎sᴏʟᴜᴛɪᴏɴ❤︎

1.  (2x – 7y) (2x + 8y)

Applying the given formula, we get

\to (2x)^2 + (-7y + 8y)2x + 7y \times 8y

\to 4x^2 + (y)2x + 56y^2

\to\ 4x^2 + 2xy + 56y^2

2.  103\times 95

Here,

\:\:\:\:\: 103 \times 95

\to (100 + 3)\times (100 - 5)

Applying the given formula, we get

\to 100^2 + [3 + (- 5)]\times 100 +3\times (-5)

\to 10000 - 2\times 100 - 15

\to 10000 - 200 - 15

\to 9800 - 15

\to 9785

3.  505\times 502

Here,

\:\:\:\:\: 505\times 502

\to (500 + 5)\times (500 + 2)

Applying the given formula, we get

\to 500^2 + (5 + 2)\times 500 + 5\times 2

\to 250000+ 7\times 500 + 10

\to 250000+ 3500 + 10

\to 250000+ 3510

\to 253510

4.  (5p - 79) (5p - 79)

Applying the given formula, we get

\to (5p)^2 +[(- 79) + (-79)]\times 5p

 \:\:\:\:\:+ (- 79)\times (-79)

\to 25p^2 - 158\times 5p + 6241

\to 25p^2 - 790p + 6241

❦︎ᴀᴅᴅɪᴛɪᴏɴᴀʟ ғᴏʀᴍᴜʟᴀs❦︎

  • (a + b)^2 = a^2 + 2ab + b^2

  • (a - b)^2 = a^2 - 2ab + b^2

  • (x - a)(x - b)

 \:\:\:\:\:\:\:= x^2 - (a+b)x + ab

Answered by reenapandey581
5

Answer:

I will tell the answer tomorrow

Similar questions