3. Find the ratio in which point T(-1, 6)divides the line segment joining the points
P(-3, 10) and Q(6, -8).
Answers
Answered by
2
Answer:
R.E.F image
Let T divides PQ in
′
λ:1" ratio
∴ (
λ+1
6λ−3
)=−1 [By section formula]
⇒6λ−3=−λ−1
⇒7λ=2
⇒[λ=2/7]
Hence ratio is [2:7].
Step-by-step explanation:
plz mark me as brainliest plz plz plz
Attachments:
Answered by
26
☯ Explanation,
Point T(-1, 6) divides the line segment joining the points P(-3, 10) and Q(6, -8).
Where,
⇒ T(-1 , 6) = (x , y)
⇒ P(-3 , 10) = (x1 , y1)
⇒ Q(6 , -8) = (x2 , y2)
Applying section formula,
⇒ x = (mx2 + nx1)/(m + n)
[ Put the values ]
⇒ -1 = (m × 6 + n × (-3))/(m + n)
⇒ -1(m + n) = 6m - 3n
⇒ -m - n = 6m - 3n
⇒ -n + 3n = 6m + m
⇒ 2n = 7m
⇒ m : n = 2 : 7
☯ Hence,
The ratio of joining segment is 2 : 7.
Similar questions
English,
2 months ago
Science,
5 months ago
Computer Science,
5 months ago
Chemistry,
11 months ago
Chemistry,
11 months ago