Math, asked by Manas5149, 9 months ago

3. Find the roots of the following equations:
(i)
x-1/x=3,where x is not equal to zero​

Answers

Answered by Abhishek474241
5

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A equation
  • x - 1/x =3
  • x is not equal to 0

{\sf{\green{\underline{\large{To\:Verify}}}}}

  • Root of the equation

{\sf{\pink{\underline{\Large{Explanation}}}}}

Solving the equation.

=>x - 1/x =3

=>x²-1=3x

=>x²-3x-1

From quadratic formula

\tt{X=\dfrac{-b\pm{\sqrt{b^2-4ac}}}{2a}}

\rightarrow\tt{X=\dfrac{3\pm{\sqrt{9-4\times{1}{-1}}}}{2}}

\rightarrow\tt{X=\dfrac{3\pm{\sqrt{9+4}}}{2}}

\rightarrow\tt{X=\dfrac{3\pm{\sqrt{13}}}{2}}

Taking x=+

\rightarrow\tt{X=\dfrac{3+{\sqrt{13}}}{2}}

Taking x=-

\rightarrow\tt{X=\dfrac{3-{\sqrt{13}}}{2}}

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=-3

C=-1

\tt\alpha{+}\beta{=}\dfrac{3}{1}

\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\tt\alpha{\times}\beta{=}\dfrac{-1}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by psupriya789
0

Answer:

Hope its helps you :)

Step-by-step explanation:

As been attached

For still more answers for dis question click below

https://brainly.in/question/4419289

             

                 Mark as brainliest answer

Attachments:
Similar questions