3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.81
Answers
Answer:
Mark me brainliest
Step-by-step explanation:
first you need to divide 81 by divison method then see which pair is two or 1 there is 1 three so we have to divide it by 3
Prime factors of 81 = 3 x 3 x 3 x 3
Here one factor 3 is not grouped in triplets.
Therefore 81 must be divided by 3 to make it a perfect cube.
(ii) 128
Prime factors of 128 = 2 x 2 x 2 x 2 x 2 x 2 x 2
Here one factor 2 does not appear in a 3’s group.
Therefore, 128 must be divided by 2 to make it a perfect cube.
(iii) 135
Prime factors of 135 = 3 x 3 x 3 x 5
Here one factor 5 does not appear in a triplet.
Therefore, 135 must be divided by 5 to make it a perfect cube.
(iv) 192
Prime factors of 192 = 2 x 2 x 2 x 2 x 2 x 2 x 3
Here one factor 3 does not appear in a triplet.
Therefore, 192 must be divided by 3 to make it a perfect cube.
(v) 704
Prime factors of 704 = 2 x 2 x 2 x 2 x 2 x 2 x 11
Here one factor 11 does not appear in a triplet.
Therefore, 704 must be divided by 11 to make it a perfect cube.