Math, asked by sharmapeehu848, 2 months ago

(3) Find the sum of the cubes of the first 7 natural numbers.​

Answers

Answered by sanjaybogiedlw
0

This is the answer for your question

Attachments:
Answered by TrustedAnswerer19
44

Answer:

Formula :

 {1}^{3}  +  {2}^{3}  +  {3}^{3}  + ... +  {n}^{3}  \\  =  \{ { \frac{n(n + 1)}{2} } \}^{2}

Now,

first 7 natural numbers.

 {1}^{3}  +  {2}^{3}  +  {3}^{3}  + ... +  {6}^{3}  +  {7}^{3}  \\   \: so \:  \:  \:  \: n = 7 \\  \\ now \\  \\ sum \:  =  \:   \{ { \frac{7 \times (7 + 1)}{2} } \}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  = ( { \frac{7 \times 8}{2} })^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  ( { \frac{56}{2} })^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: =  {(28)}^{2}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:    = \: 784

Similar questions