Math, asked by pari03461, 4 months ago


3. Find the surface area and the diagonal of a cube, whose edge is 18 cm.

Answers

Answered by Berseria
95

Given :

Edge of Cube = 18 cm

To Find :

Surface Area and Diagonal of Cube.

Formula To Find :

\rm \: Surface \: Area \:of \: Cube  = 6  \: {a}^{2}  \\

 \rm \: Diagonal   \: of \: Cube \: =  \sqrt{3}   \: a \\

Where, a = Edge of Cube

Solution :

Surface Area Of Cube :

\dashrightarrow \sf \: A = 6  \: {a}^{2}  \\  \\

\dashrightarrow \sf A= 6 \times  {18}^{2}  \\  \\

\dashrightarrow \sf \: A = 6 \times 18 \times 18 \\  \\

\sf \dashrightarrow \: A = 6 \times 324 \\  \\

\sf \dashrightarrow \: A = 1944 \\

A = 1944 cm^2

Diagonal Of Cube :

\dashrightarrow \sf D =  \sqrt{3}  \: a \\  \\

\sf\dashrightarrow \: D =  \sqrt{3}  \times 18 \\  \\

\sf\dashrightarrow \: D = 1.73 \times 18 \\  \\

\dashrightarrow \sf D = 31.14 \\

D = 31.14 cm

\therefore \sf \: Surface \: Area \: of \: Cube \:  = 1944 \: cm^² \\ \sf And \: Diagonal \: of \: Cube \:  = 31.14 \: cm

Answered by BrainlyPotter176
41

\blue\bigstar Answer:

  • Total Surface Area = 1944 cm²
  • Diagonal = 31.176 cm

\orange\bigstarGiven:

  • Edge of the cube = 18cm

\green\bigstarTo find:

  • Surface Area of the cubeDiagonal of the cube

\purple\bigstarSolution:

Edge of the cube = 18 cm

Formula for Total Surface Area of the cube = 6a²

(Where "a" is the "edge")

So,  \sf \: Total \: Surface \: Area \: = \: 6 {a}^{2}

 \sf\implies \: Total \: Surface \: Area \: = \: 6 \: \times \: 18cm \: \times \: 18cm \: \\ ( \: \tt \: where \: "a" \: = \: edge \: \: of \: the \: cube )

 \sf \implies \: Total \: Surface \: Area \: = \boxed{ \: \sf1944 \: \sf{cm}^{2} }

 \sf\therefore \: The \: Total \: Surface \: Area \: of \: the \: cube \: is \: 1944 {cm}^{2}

Now, The Diagonal of a cube = √3a

(where "a" = edge of the cube )

So, \sf Diagonal \: of \: the \: cube \: = \: \sqrt{3} \: a \:

 \sf \: \implies \: Diagonal \: of \: the \: cube \: = \: \sqrt{3} \times \: 18 \: cm

 \sf \: \implies \: Diagonal \: of \: the \: cube \: = \: 1.732 \: \times \: 18

 \sf \: \implies \: Diagonal \: of \: the \: cube \: = \: \boxed{ \sf \: 31.176 \: cm}

 \sf \: \therefore \: The \: Diagonal \: of \: the \: cube \: is \: 31.176 \: cm \: (approx.)

\pink\bigstarConcepts Used:

  • Total Surface Area of a cube = 6a²
  • Diagonal of a cube = √3 a

(where, a = edge of the cube)

\red\bigstar Additional Information :

  • Lateral Surface Area of a cube = 4a² (where a = edge of the cube)
  • Total Surface Area of a Cuboid = 2(lb + bh + hl)
  • Lateral Surface Area of the Cuboid = 2(lh + bh)
  •  \sf Diagonal \: of \: a \: cuboid \: = \: \sqrt{ {l}^{2} \: + \: {b}^{2} \: + \: {h}^{2} }

( where l = Length of the Cuboid, b = Breath of a Cuboid, h = height of the Cuboid)

Similar questions