3. Find the surface area of a cube whose edge is :
(i) 4 m
Answers
Given : Edge of a cube is 4 m .
Need To Find : Lateral Surface Area of Cube.
Where ,
- a is the edge of a cube in m .
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀
Therefore,
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Explanation:
Given : Edge of a cube is 4 m .
Need To Find : Lateral Surface Area of Cube.
\begin{gathered}\underline {\frak{ As, \:We \:know\:that,\:}}\\\end{gathered}
As,Weknowthat,
\begin{gathered}\qquad \large {\boxed { \pink {\sf{\bigstar Lateral\:Surface \:Area \:_{(Cube)} = 4 \times (a)^{2} \:sq.units }}}}\\\end{gathered}
★LateralSurfaceArea
(Cube)
=4×(a)
2
sq.units
Where ,
a is the edge of a cube in m .
⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\\end{gathered}
⋆NowBySubstitutingtheGivenValues:
\begin{gathered}\qquad \qquad \qquad:\implies \sf{ L.S.A _{(Cube)} = 4 \times 4^{2}}\\\end{gathered}
:⟹L.S.A
(Cube)
=4×4
2
\begin{gathered}\qquad \qquad \qquad:\implies \sf{ L.S.A _{(Cube)} = 4 \times 16}\\\end{gathered}
:⟹L.S.A
(Cube)
=4×16
⠀⠀⠀⠀⠀\begin{gathered}\underline {\boxed{\pink{ \mathrm { L.S.A _{(Cube)} = 64\: m^{2}}}}}\:\bf{\bigstar}\\\end{gathered}
L.S.A
(Cube)
=64m
2
★
Therefore,
⠀⠀⠀⠀⠀\begin{gathered}\therefore {\underline{ \mathrm { Lateral \:Surface \:Area\:of\:Cubr \:is\:\bf{64\: m^{2}}}}}\\\end{gathered}
∴
LateralSurfaceAreaofCubris64m
2
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\\end{gathered}
∣
⋆MoreToknow:
∣
\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}
†
FormulasofAreas:−
⋆Square=(side)
2
⋆Rectangle=Length×Breadth
⋆Triangle=
2
1
×Breadth×Height
⋆Scalene△=
s(s−a)(s−b)(s−c)
⋆Rhombus=
2
1
×d
1
×d
2
⋆Rhombus=
2
1
p
4a
2
−p
2
⋆Parallelogram=Breadth×Height
⋆Trapezium=
2
1
(a+b)×Height
⋆EquilateralTriangle=
4
3
(side)
2