Math, asked by tanyachoudhary123, 2 months ago

3. Find the value of x from
(3x - 20) +  \frac{1}{2} (2 + 3y) =  \frac{1}{5}
where y = x-3​

Answers

Answered by kanwaludey
1

Answer:

correct answer is 202/45

Step-by-step explanation:

Mark me as brainliast

Answered by ciola
0

Answer:

y = x - 3 \\  \\ (3x - 20) +  \frac{1}{2} (2 + 3y) =  \frac{1}{5}  \\ (3x - 20) +  \frac{1}{2} (2 + 3(x - 3)) =  \frac{1}{5}  \\ (3x - 20) +  \frac{1}{2} (2 + 3x - 9) =  \frac{1}{5}  \\ (3x - 20) +  \frac{1}{2} (3x - 7) =  \frac{1}{5}  \\ (3x - 20) +  \frac{3x - 7}{2}  =  \frac{1}{5}  \\  \frac{2(3x - 20) + 3x - 7}{2}  =  \frac{1}{5}  \\  \frac{6x - 40 + 3x - 7}{2}  =  \frac{1}{5}  \\  \frac{9x - 47}{2}  =  \frac{1}{5}  \\ 5(9x - 47) = 1 \times 2 \\ 45x - 235 = 2 \\ 45x = 2 + 235 \\ 45x = 237 \\ x =  \frac{237}{45} \\ x = 5 \frac{\cancel{12}_{\: 4}}{\cancel{45}_{\: 15}}\\ \boxed{ x = \underline{ \underline{ \bf 5 \frac{4}{15} }}} \\ \\ y = x - 3 \\ y = 5 \frac{4}{15} - 3\\ y = \frac{79}{15} - 3 \\ y = \frac{79 - 45}{15} \\ y = \frac{34}{15} \\ \boxed {\underline{\underline{\bf y = 2  \frac{4}{15}}}}

Similar questions