Math, asked by adnanayub138, 9 months ago

3. Find the value(s) of the unknown(s) in each of the
following kites.
Kindly give answer for both parts, thanks in anticipation ​

Attachments:

Answers

Answered by Anonymous
8

Q. (a)

✧ Given :-

  • \tt{\angle}ADC = 100°

To find :-

  • \rm{\bold{The unknown angle i.e.,{\angle} a° = ?}}}

✧ Solution :-

  • we know that CAD = DCA

according to the question,

=> CAD + DCA + CDA = 180° (angle sum property)

=> + + 100° = 180°

=> 2a° = 80° (on subtracting 100 both side)

\rm\purple{\underline{\bold{<strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong>=</strong><strong>&gt;</strong><strong> </strong><strong>a°</strong><strong> </strong><strong>=</strong><strong> </strong><strong>4</strong><strong>0</strong><strong>°</strong><strong> </strong>( on\:\: dividing \:both \:side \:by \:2)}}}

Q. (b) :-

Given :-

  • DCA = 26° = DAC (opposite angles are equal)

To find :-

  • The unknown angle i.e., = ??

Solution :-

  • \tt{we \:know \:that\: {\angle}CAD = {\angle}DCA = 26°}

\tt\green{\underline{according \:to\: the \:question,}}

=> 26°(2) + = 180°

=> 52° + = 180°

\rm\orange{\underline{\bold{<strong>=</strong><strong>&gt;</strong><strong> </strong><strong>c°</strong><strong> </strong><strong>=</strong><strong> </strong><strong>1</strong><strong>2</strong><strong>8</strong><strong>°</strong> }}}

Answered by Anonymous
5

Q.(a)

Given :-

  • \bf{\angle}ADC = 100°

To find :-

  • \bf{the \: unknown \:{\angle}a°=?}

Solution :-

  • \bf{we \:know \:that \;{\angle}DAC= {\angle} ACD = a°}

According to the question,

=> \bf{\angle}{DAC + {\angle}{ACD + CDA  = 100° }}

=> 2a° + 100° = 180°

=> 2a° = 180° - 100°

=> = 40°

Now, in ABC :-

Given :-

  • \bf{\angle}{ACB = 61°}

To find :-

  • \bf {The \:unknown {\angle}b° = ??}

✧ Solution :-

  • \bf{\angle{As \: we \:know \: that \: {\angle}BAC = {\angle}BCA = 61°}}

According to the question,

=> \bf{\angle}BAC + {\angle}BCA + {\angle} ABC = 180°

=> 2(61°) + = 180°

=> 122 + = 180°

=> = 180° - 122° => = 38°

Q.(b)

Given :-

  • \bf{\angle}ACD = 26°
  • \bf{\angle}BAC = 40°

To find :-

  • \bf{the \: unknown \: angle \:i.e., c° = ?}

Solution :-

  • \bf{as we know here {\angle}DAC= {\angle}DCA = 26° </li></ul><p><strong>Acc</strong><strong>ording</strong><strong> to</strong><strong> the</strong><strong> question</strong><strong>,</strong><strong> </strong></p><p><strong>=</strong><strong>&gt;</strong><strong> </strong>[tex]\bf{\angle}DAC + {\angle}DCA + c° = 180°

    => 2(26)° + = 180°

    => 52° + = 180°

    => c° = 128°

Similar questions