Math, asked by aappleciachyne, 19 days ago

3. Find the volume of the cuboid whose dimensions are: (i) length = 26 m, breadth = 14 m and height = 6.5 m (ii) length = 24 m, breadth = 25 m and height = 6 m. how do we get 3600 to the power of 3​

Answers

Answered by Anonymous
25

 \; \; \qquad\qquad \large{\pmb{\underline{\underline{\frak{ Part \; (i) }}}}}

Given :

  • Length = 26 m
  • Breadth = 14 m
  • Height = 6.5 m

\rule{200pt}{3pt}

To Find :

  • Volume of Cuboid = ?

\rule{200pt}{3pt}

Solution :

~ Formula Used :

 {\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ Volume{\small_{(Cuboid)}} = Length \times Breadth \times Height }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Volume :

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = Length \times Breadth \times Height }}}} \\

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = 26 \times 14 \times 6.5 }}}} \\

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = 26 \times 91 }}}} \\

 \qquad {\color{darkblue}{:\implies{\underline{\boxed{\orange{\sf{Volume =  2366 \; m³ }}}}}}}{\pink{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❝ Volume of the Cuboid is 2366 . ❞

 \\ {\red{\underline{\rule{300pt}{9pt}}}}

 \; \; \qquad\qquad \large{\pmb{\underline{\underline{\frak{ Part \; (ii) }}}}}

Given :

  • Length = 24 m
  • Breadth = 25 m
  • Height = 6 m

 \rule{200pt}{3pt}

To Find :

  • Volume of Cuboid = ?

 \rule{200pt}{3pt}

Solution :

~ Formula Used :

 {\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ Volume{\small_{(Cuboid)}} = Length \times Breadth \times Height }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Volume :

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = Length \times Breadth \times Height }}}} \\

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = 24 \times 25 \times 6 }}}} \\

 \; \; {\dashrightarrow{\qquad{\sf{ Volume = 24 \times 150 }}}} \\

 \qquad {\color{maroon}{:\implies{\underline{\boxed{\green{\sf{Volume =  3600 \; m³ }}}}}}}{\orange{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❝ Volume of the Cuboid is 3600 . ❞

 \\ {\red{\underline{\rule{300pt}{9pt}}}}

Answered by bibhutikr673
7

Answer:

Solution is in the attachment.

hope it helps you!

Attachments:
Similar questions