Math, asked by shubham4724, 2 months ago

3. Find the zeroes of the following quadratic polynomials and verify the
relationship between the zeroes and the coefficients.
(1) 4s² – 4s+1 (ii)
 {6x}^{2} - 3 - 7x

Answers

Answered by s1253tharun2999
0

Answer:

सुभाषित पाठ के सभी श्लोकों को लिखें व याद करें ।

Attachments:
Answered by vipinkumar212003
2

Step-by-step explanation:

(i) \: 4 {s}^{2}  - 4s + 1 \\  = 4 {s}^{2}  - 2s  - 2s+ 1 \\  = 2s(2s - 1) - 1(2s - 1) \\ =  (2s - 1)(2s - 1) \\ s =  \frac{1}{2} \:  \:  \:  \:  , \:  \:  \:  \frac{1}{2}  \\   \:  \:  \:  \:  \: \alpha  \:  \:  \:  \: ,  \:   \:  \:  \:  \beta  \\ \blue{\mathfrak{⟨\underline{\large{sum \: of \: zeros}}}⟩} \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \frac{1}{2}  +  \frac{1}{2}  =  \frac{ - ( - 4)}{4}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 1 = 1. \: verified \\  \blue{\mathfrak{⟨\underline{\large{product \: of \: zeros}}}⟩} \\  \alpha  \beta  =  \frac{c}{a}  \\  \frac{1}{2}  \times  \frac{1}{2}  =  \frac{1}{4}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{4} =  \frac{1}{4}.verified  \\(ii) \: 6 {x }^{2}  - 3 - 7x \\  = 6 {x}^{2}  - 7x - 3 \\  = 6 {x}^{2}  - 9x + 2x - 3 \\  = 3x(2x - 3) + 1(2x - 3) \\  = (3x + 1)(2x - 3) \\ x =  \frac{ - 1}{3} \: \:  ,   \: \:  \frac{3}{2} \\   \:  \:  \:  \:  \:  \:  \:  \: \alpha   \:  \:  \:   \: , \:  \:  \ \beta  \\ \blue{\mathfrak{⟨\underline{\large{sum \: of \: zeros}}}⟩} \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \frac{ - 1}{3}  +  \frac{3}{2}  =  \frac{ - ( - 7)}{6}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{7}{6}  =  \frac{7}{6} .verified \\ \blue{\mathfrak{⟨\underline{\large{product \: of \: zeros}}}⟩} \\  \alpha  \beta  =  \frac{c}{a}  \\  \frac{ - 1}{3}  \times  \frac{3}{2}  =  \frac{ - 3}{6}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 1}{2}  =  \frac{ - 1}{2} .verified

HOPE IT HELPS YOU

MARK ME BRAINLIEST

Similar questions