Math, asked by ranjitlohani067, 8 months ago

3. Find the zeros of the polynomial x2 – 3x – m(m + 3).​

Answers

Answered by rachu8221
0

ANSWER

Given: equation x

2

−3x−m(m+3)=0, where m is a constant

To find the roots of the equation

Sol: the given equation is of form ax

2

+bx+c=0∴a=1,b=−3,c=−m(m+3)

We know the roots of the equation can be find out using the formula,

x=

2a

−b±

b

2

−4ac

Substituting the values of a, b, c, we get

x=

2

−(−3)±

(−3)

2

−4(1)(−m(m+3)

⟹x=

2

9+4m

2

+12m

⟹x=

2

3±(2m+3)

or x=

2

3+(2m+3)

,x=

2

3−(2m+3)

⟹x=m+3,x=−m are the required roots of the equation.

How satisfied are you with the answer?

Mark me Brainlest and follow me

Answered by avijitm88
0

f(x) = x2 – 3x – m (m + 3) 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3) 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)]

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)] = [x – (m + 3)] (x + m) 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)] = [x – (m + 3)] (x + m)  f(x) = 0 ⇒ [x – (m + 3)] (x + m) = 0 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)] = [x – (m + 3)] (x + m)  f(x) = 0 ⇒ [x – (m + 3)] (x + m) = 0 ⇒ [x – (m + 3)] = 0 or (x + m) = 0 

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)] = [x – (m + 3)] (x + m)  f(x) = 0 ⇒ [x – (m + 3)] (x + m) = 0 ⇒ [x – (m + 3)] = 0 or (x + m) = 0  ⇒ x = m + 3 or x = –m 

So, the zeroes of f(x) are –m and +3

Similar questions