Math, asked by sumisolomanv, 6 months ago

(3+i√3) (3-i√5)÷(√3+√2i) (√3-√2i​

Answers

Answered by BrainlyUniverse
38

 \bf \huge{ \underline{ \underline{ \red{Correct  \:  \: Question:-}}}}

 \sf \large \:  \frac{(3 + i \sqrt{5} )(3 - i \sqrt{5}) }{( \sqrt{3}  +  \sqrt{2} i) - ( \sqrt{3}  - i \sqrt{2} )}  \\

 \bf \huge{ \underline{ \underline{ \red{Answer:-}}}}

 :  \longmapsto\sf \large \:  \frac{(3 + i \sqrt{5} )(3 - i \sqrt{5}) }{( \sqrt{3}  +  \sqrt{2} i) - ( \sqrt{3}  - i \sqrt{2} )}  \\

\sf \large \: we \:  \: know \:  \: that \:  :

 \boxed{ \huge{ \mathfrak{ \red{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}}

:  \longmapsto\sf \large \:  \frac{ {(3)}^{2} -  {(i \sqrt{5} })^{2}  }{ \sqrt{3}  +  \sqrt{2} i -  \sqrt{3}  + i \sqrt{2} }  \\

:  \longmapsto\sf \large \:  \frac{9 -  {i}^{2} \times 5 }{ \sqrt{3} -  \sqrt{3} +  \sqrt{2} i + i \sqrt{2}   }  \\

 \sf \underline { let \:  \: us \:  \: assume \:  \: that \:  \:  {i}^{2} =  - 1 \:  }

:  \longmapsto\sf \large \:  \frac{9 - ( - 1) \times 5}{0 +  \sqrt{2} i + i \sqrt{2} }  \\

:  \longmapsto\sf \large \:  \frac{9 + 5}{ \sqrt{2} i +  \sqrt{2}i }  \\

:  \longmapsto\sf \large \:  \frac{14}{2 \sqrt{2} i}  \\

Rationalising the denominator:

:  \longmapsto\sf \large \:  \frac{14}{2 \sqrt{2}i }  \times  \frac{ \sqrt{2}i }{ \sqrt{2}i }  \\

:  \longmapsto\sf \large \:  \frac{28 \sqrt{2} i}{8 \times  {i}^{2} }  \\

:  \longmapsto\sf \large \:  \frac{28 \sqrt{2}i }{8 \times ( - 1)}  \:  \:  \:  \: (   \therefore \:  \:  {i}^{2}  =  - 1) \\

:  \longmapsto\sf \large \:  \frac{28 \sqrt{2} i}{ - 8}  \\

:  \longmapsto\sf \large \:  \frac{ - 7 \sqrt{2} i}{2}  \\

:  \longmapsto\sf \large \:  \frac{ - 7 \sqrt{2} }{2} i \\

:  \longmapsto\sf \large \: 0 + \left ( \dfrac{ - 7 \sqrt{2} }{2} \right )i \\

Similar questions