Math, asked by kaurkulwant507, 1 year ago

3. If A = 15°, find the value of :
cos 3A-2cos 4A
sin3A+2sin 4A​

Answers

Answered by Anonymous
6

\huge \red { \boxed{ \boxed{ \mathsf{ \mid \ulcorner Answer : \urcorner \mid }}}}

If A = 15°

======================>

A. T. Q

Cos 3A - 2cos 4A.................(1)

sin 3A + 2sin 4A.................(2)

Put value of A in 1 and 2.

\rule{200}{2}

Taking (1)

cos 3(15)° - 2cos 4(15)°

⟹ cos 45° - 2 cos 60°

Put value of cos 45° and cos 60°.

 \sf{⟹ \:  \frac{1}{ \sqrt{2}  }  - 2( \frac{1}{2})   } \\  \\  \sf{⟹ \frac{1}{ \sqrt{2} } -  \frac{ \cancel2}{\cancel2}} \\  \\  \sf{⟹ \frac{1}{ \sqrt{2} } - 1 } \\  \\  \sf{⟹ \frac{1 -  \sqrt{2} }{ \sqrt{2} } }

\rule{200}{2}

Taking (2)

sin 3(15)° + 2sin 4(15)°

sin 45° + 2sin 60°

Put values of sin 45° and sin 60°.

  \sf⟹\frac{1}{ \sqrt{2} } - 2( \frac{ \sqrt{3} }{2}) \\  \\  \sf⟹ \frac{1}{ \sqrt{2}  } -  \frac{ \cancel2 \sqrt{ 3} }{ \cancel2}   \\  \\  \sf⟹ \frac{1}{ \sqrt{2} }  -  \sqrt{3}  \\  \\  \sf⟹ \frac{1 -  \sqrt{6} }{ \sqrt{2} }

Attachments:
Similar questions