Math, asked by krishashah26, 10 months ago

3.
If A(2, 0) and B(0, 3) are two points, find
the equation of the locus of point P such
that AP = 2BP.​

Answers

Answered by idomenus
14

Answer:

-3x ^{2} -3y ^{2}-2x  +8y -32=0.

Step-by-step explanation:

If two points A(x1,y1) and B (x2,y2) are given, then we applying the distance formula.

Let locus of point P(α,β) ,  

Given, AP=2BP  

taking square both sides,  

AP^{2} =4BP^{2}

 

now, AP=  

so, AP² = (α -2)² + (β -0 )²

 similarly, PB =  

so, PB² =[tex](α - 0)^{2}  + (β - 3)^{2}

Then,

AP^{2} =4BP^{2}(α -2)^{2}  + (β -0 )^{2} =4[ (α - 0)^{2}  + (β - 3)^{2}]\\

-3\alpha ^{2} -3\beta ^{2}-2\alpha +8\beta -32=0

Now, put \alpha  = x and \beta  = y

Thus, -3x ^{2} -3y ^{2}-2x  +8y -32=0  is the locus of point P e.g., circle

Similar questions