Math, asked by rashiareshmwala, 1 month ago

3. If a.ß are the zeroes of the polynomials f(x) = x² + x + 1 , then 1/a + 1/b​

Answers

Answered by ArnavKrishna24
0

Answer:

2

Step-by-step explanation:

Quadratic formula: \frac{-b\ +- \sqrt{b^2 - 4ac} }{2a}

a = \frac{-1 + \sqrt{1 - 4}}{2}

b = \frac{-1 - \sqrt{1 - 4}}{2}

1/a = 2/\sqrt{3} - 1

1/b = 2/-(\sqrt{3} + 1)

1/a + 1/b = \frac{2}{\sqrt{3} - 1} + \frac{2}{-\sqrt{3} - 1}

= \frac{2[\sqrt{3} - 1 -\sqrt{3} - 1]}{(-1)(\sqrt{3} + 1)(\sqrt{3} - 1)}

= \frac{2[\sqrt{3} - 1 -\sqrt{3} - 1]}{-1(3 - 1)}

= \frac{2[\sqrt{3} - 1 -\sqrt{3} - 1]}{-2}

= -1(\sqrt{3} - 1 - \sqrt{3} - 1)

= -1(-2)

= 2

Similar questions