3. If a + b + c = 8 and a2 + b2 + c2 = 34, find the value of a3 + b3 + c
3 – 3abc.
Answers
Answered by
1
Answer:
a3 + b3 + c3 = 152
3- 3abc = 0
Answered by
10
Answer:
Step-by-step explanation:
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ac)
a³+b³+c³-3abc = (8)(34- (ab+bc+ac))-------------------1
(a+b+c)² = a²+b²+c²-2ab-2bc-2ac
8² = 34 -2(ab+bc+ac)
64-34= -2 (ab+bc+ac)
30 / -2 = (ab+bc+ac)
-15 = (ab+bc+ac) ------------------------------2
SUBSTITUTE 2 IN 1
a³+b³+c³-3abc = 8(34-(-15))
a³+b³+c³-3abc = 8(34+15)
a³+b³+c³-3abc = 8 *49
a³+b³+c³-3abc = 392
PLEASE MARK AS THE BRAINLIEST!!! DEAR FRIEND!!! PLEASE!!!
Similar questions