Math, asked by rachanagupta59, 10 months ago

3. If a + b + c = 8 and a2 + b2 + c2 = 34, find the value of a3 + b3 + c
- 3abc.​

Answers

Answered by gnanambigaiarun
6

Answer:

152

Step-by-step explanation:

given value:-

a+b+c=8

a²+b²+c² = 34

(a+b+c)² = a²+b²+c²+2ab+2bc+ca

(8)² = 34+2(ab+bc+ca)

64-34 = 2(ab+bc+ca)

30/2 =(ab+bc+ca)

15 = (ab+bc+ca)

a³+b³+c³-3abc =(a+b+c)(a²+b²+c²-ab-bc-ca)

a³+b³+c³-3abc = (8)[34-(ab+bc+ca)]

a³+b³+c³-3abc=(8)[34-(15)]

a³+b³+c³-3abc=(8)(19)

a³+b³+c³-3abc=152.

Similar questions