Math, asked by VijayaLaxmiMehra1, 1 year ago

3. If alpha, beta and gemma are zeroes of cubic polynomial x^3-2x^2+qx-r and alpha+beta=0, show that 2q=r.

Answers

Answered by nikky28
14
Heya. !!!

here is the answer,

__________________


Let α,β,γ be the zeros of the polynomial x^3−2x^2+qx−r 
such that α+β=0

Now, α+β+γ=
 -  \frac{Coefficient \: of \:  {x}^{2} }{Coefficient \: of \:  {x}^{3} }


⇒0+γ = − (−2/1) = 2

⇒γ=2

Since γ is a zero of the polynomial f(x). Therefore,    

 f(γ)=0

⇒γ^3−2γ^2+qγ−r = 0

⇒2^3−2(2^2)+2q−r = 0

⇒2q=r 

Regards


_______________

Hope it helps u !!!

Cheers :))

# Nikky
Similar questions