Math, asked by pdhanapal1440, 26 days ago

3) Ifαandβarezeroesofp(x)=2x2+4kx+4,suchthatα2 +β2 = 12, find k.​

Answers

Answered by subhashsy0910
0

Answer:

p(x)= 2x2+4kx+4

a2+b2=12

So,

a+b= -b/a

a+b=-4k/2

a+b=-2k

and,

ab= c/a

ab= 4/2

ab=2

Now,

(a+b)2= a2+b2+2ab

(-2k)2= 12+2×2

4k2=. 12+4

4k2=16

K2= 16/4

K2= 4

k=4

(k= 2)

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \: p(x) =  {2x}^{2} + 4kx + 4

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  =  - \dfrac{4k}{2}  =  - 2k

Also, we know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{4}{2}  = 2

According to statement,

\rm :\longmapsto\: { \alpha }^{2} +  { \beta }^{2}  = 12

 \rm :\longmapsto\:\:  {( \alpha +   \beta )}^{2}  - 2 \alpha  \beta  = 12

Now, on substituting the values, we get

\rm :\longmapsto\: {( - 2k)}^{2} - 2 \times 2 = 12

\rm :\longmapsto\: {4k}^{2} - 4 = 12

\rm :\longmapsto\: {4k}^{2} = 12 + 4

\rm :\longmapsto\: {4k}^{2} = 16

\rm :\longmapsto\: {k}^{2} = 4

\bf\implies \:k  \: =  \:  \pm \: 2

Additional Information :-

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3}  +  {bx}^{2} + cx + d, \: then

\red{\boxed{ \rm{ \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a} }}}

\red{\boxed{ \rm{ \alpha \beta    + \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a} }}}

\red{\boxed{ \rm{ \alpha  \beta \gamma  =  - \dfrac{d}{a} }}}

Similar questions