Math, asked by choudharykanchan478, 8 months ago


3) If cosa= 8/17

then find the value of

3 sinA - 5 cosA
3 sinA + 7 COSA​

Answers

Answered by Anonymous
0

 \sin(a)  =  \sqrt{1 -  \frac{ {8}^{2} }{ {17}^{2} } }  \\  \\  \sin(a)  =  \sqrt{ \frac{289 - 64}{289} }  \\  \\  \sin(a )  =  \frac{15}{17}  \\ hence \: now \\  \\ 3 \sin(a)  - 5 \cos(a )  = 3 \times  \frac{15}{17}  - 5 \times  \frac{8}{17}  \\   \\ \ =  \frac{45}{17}  -  \frac{40}{17}  \\  \\  =  \frac{45 - 40}{17}  \\  \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{5}{17}  \\  \\  3 \sin(a)  + 7 \cos(a)  = 3 \times  \frac{15}{17}  + 7 \times  \frac{8}{17}  \\ \\   =  \frac{45}{17}  +  \frac{56}{17}  \\  \\  =  \frac{45 + 56}{17}  \\  \\  =  \frac{101}{17}

PLEASE MARK ME AS BRAINLIST

Answered by shubhang1206
0

Answer:

3 sinA - 5 cosA = 5/17

3 sinA + 7 COSA = 8/17

Step-by-step explanation:

cos A = 8/17

cos A = B/H

sin A = P/H

H²=P²+B²

(17)²=P²+ (8)²

289-64=P²

P² = 225

P=15

sin A = 15/17

3 sin A - 5 cos A = 3X15/17 - 5X8/17

= 45/17 - 40/17

= 5/17

3 sin A + 7 cos A = 3X15/17 + 7x5/17

= 45/17 + 35/17

= 80/17

Similar questions