3. If one of the angles of a triangle is 130°, then find the angle between the bisectors of the other
two angles can be ?
Answers
Answered by
0
Answer:
ANSWER
Consider a △ABC,such that ∠BAC=130
∘
and bisectors of ∠B and ∠C meet at O.
To find: ∠BOC
Now, in △ABC,
∠BAC+∠ABC+∠ACB=180
130+∠ABC+∠ACB=180 (Angle sum property)
∠ABC+∠ACB=50
2
1
(∠ABC+∠ACB)=25
∠OBC+∠OCB=25 (OB and OC bisect ∠ABC and ∠ACB)
Now, in △OBC,
∠OBC+∠OCB+∠BOC=180
25+∠BOC=180
∠BOC=155
∘
Answered by
3
Answer:
Consider a △ABC,such that ∠BAC=130
∘
and bisectors of ∠B and ∠C meet at O.
To find: ∠BOC
Now, in △ABC,
∠BAC+∠ABC+∠ACB=180
130+∠ABC+∠ACB=180 (Angle sum property)
∠ABC+∠ACB=50
2
1
(∠ABC+∠ACB)=25
∠OBC+∠OCB=25 (OB and OC bisect ∠ABC and ∠ACB)
Now, in △OBC,
∠OBC+∠OCB+∠BOC=180
25+∠BOC=180
∠BOC=155
∘
.
Similar questions