3. If one of the zeroes of the polynomial x^2+( k^2 - 2k)X +(k^4 - 3k^2+5k -1) is additive
inverse of the other then what will be the value of k?
(2 Points)
Answers
Answered by
0
Answer:
Step-by-step explanation:
let the zeros of the polynomial is a and the other is -a
p(x)=x^2+(k^2-2k)x+(k^4-3k^2+5k-1)
p(a)=0
a^2+(k^2-2k)a+(k^4-3k^2+5k-1)=0
a^2+k^2a-2ak+k^4-3k^2+5k-1=0---(1)
p(-a)=0
(-a)^2+(k^2-2k)(-a)+(k^4-3k^2+5k-1)=0
a^2-ak^2+2ak+k^4-3k^2+5k-1=0---(2)
(1)-(2)
2ak^2-4ak=0
2ak(k-2)=0
2ak=0
ak=0
k=0
k-2=0
k=2
the values of k will be 0,2
Similar questions