Math, asked by tegvirbhullar, 11 months ago


3. If the points A (4, 3) and B (x. 5) are on the circle with centre 0 (2, 3), find the value of x​

Answers

Answered by Tomboyish44
5

Answer:

B(2, 5)

∴ x = 2

\\ \\

Step-by-step explanation:

We have two points on the circumference of the circle. When we join these to the centre of the circle, we get two radii that are equal to each other.

\\ \\

\Longrightarrow \tt OB = OA\\ \\

\Longrightarrow \tt \sqrt{(2-x)^2+(3-5)^2}=\sqrt{(2-4)^2+(3-3)^2}\\ \\

\sf Squaring \ on \ both \ sides \ we \ get,\\ \\

\Longrightarrow \tt \sqrt{(2-x)^2+(3-5)^2}^{ \ 2}=\sqrt{(2-4)^2+(3-3)^2}^{ \ 2}\\ \\

\sf Roots \ and \ squares \ gets \ cancelled.\\ \\

\Longrightarrow \tt (2-x)^2+(3-5)^2=(2-4)^2+(3-3)^2

\Longrightarrow \tt 4+x^2-4x+(-2)^2=(-2)^2+(0)^2

\Longrightarrow \tt 4+x^2-4x+4=4+0

\Longrightarrow \tt 4+x^2-4x+4-4=0

\Longrightarrow \tt 4+x^2-4x=0

\Longrightarrow \tt x^2-4x+4=0\\ \\

Sum ⇒ - 4

Product ⇒ 4

Splitting -4x = -2 × -2

\\ \\

\Longrightarrow \tt x^2-2x-2x+4=0

\Longrightarrow \tt x(x-2)-2(x-2)=0

\Longrightarrow \tt (x-2)(x-2)=0

\\ \\

Equating the zeroes with 0 we get,

\Longrightarrow \tt x-2=0

\Longrightarrow \tt x=2

\\ \\

∴ Therefore, the value of 'x' is 2.

Attachments:
Similar questions