3. If the quotient on dividing, then find p , q and also the remainder.
Attachments:
Answers
Answered by
1
Final Answer : p = -3 , q = 0 , Remainder = - 10
Steps and Understanding :
1) We will apply Division Algorithm of Polynomials.
Dividend = Divisor * Quotient + Remainder
2) Here,
Dividend =p(x) = 8x^4 -2x^2+6x-7
Divisor = g(x) = 2x+1
Quotient = q(x) = 4x^3 + px^2-qx + 3
Remainder = r(x)
We will apply,
p(x) = q(x) * g(x) + r(x)
3) Then, we will collect all different coefficients of x and compare both sides to get the value of p, q, and r(x).
For Calculation see pic.
Steps and Understanding :
1) We will apply Division Algorithm of Polynomials.
Dividend = Divisor * Quotient + Remainder
2) Here,
Dividend =p(x) = 8x^4 -2x^2+6x-7
Divisor = g(x) = 2x+1
Quotient = q(x) = 4x^3 + px^2-qx + 3
Remainder = r(x)
We will apply,
p(x) = q(x) * g(x) + r(x)
3) Then, we will collect all different coefficients of x and compare both sides to get the value of p, q, and r(x).
For Calculation see pic.
Attachments:
Answered by
1
Solution :
Let p(x) = 8x⁴-2x²+6x-7 ,
g(x) = 2x + 1 ,
q(x) = 4x³+px²-qx+3 ,
*************************"***************
Divisibility Theorem :
Dividend=divisor×quotient+remainder
******************************************
2x+1| 8x⁴+0-2x²+6x-7|4x³-2x²+3
*******8x⁴+4x³
_______________
*********** -4x³-2x²+6x
***********-4x³ -2x²
_________________
*********************6x-7
*********************6x+3
__________________
********************** ( -4 )
Compare Given q(x) , with
4x³ + 0 - 2x² + 3 ,
we get ,
p = -2 , q = 0 ,
Remainder = -4
••••
Let p(x) = 8x⁴-2x²+6x-7 ,
g(x) = 2x + 1 ,
q(x) = 4x³+px²-qx+3 ,
*************************"***************
Divisibility Theorem :
Dividend=divisor×quotient+remainder
******************************************
2x+1| 8x⁴+0-2x²+6x-7|4x³-2x²+3
*******8x⁴+4x³
_______________
*********** -4x³-2x²+6x
***********-4x³ -2x²
_________________
*********************6x-7
*********************6x+3
__________________
********************** ( -4 )
Compare Given q(x) , with
4x³ + 0 - 2x² + 3 ,
we get ,
p = -2 , q = 0 ,
Remainder = -4
••••
Similar questions