3)
If the radius of circle is increased by
110% its area is increased by
a) 110
b) 301
c) 341
d) 501
e) None of these
Answers
Step-by-step explanation:
Answer:
Given :-
Two equation :
x + 2y = 1
(a - b)x + (a + b)y = (a + b) - 2
To Find :-
What is the value of a and b.
Solution :-
Given two equation :
\mapsto↦ \sf x + 2y = 1x+2y=1 \begin{gathered}\sf \\ \implies \bold{x + 2y - 1 =\: 0\: -----\: Equation\: no\: (1)}\\ \end{gathered}
⟹x+2y−1=0−−−−−Equationno(1)
\mapsto↦ \sf (a - b)x + (a + b)y = (a + b) - 2(a−b)x+(a+b)y=(a+b)−2
\begin{gathered}\sf \\ \implies \bold{(a - b)x + (a + b)y - (a + b + 2) =\: 0\: -----\: Equation\: no\: (2)}\\ \end{gathered}
⟹(a−b)x+(a+b)y−(a+b+2)=0−−−−−Equationno(2)
Now, as we know that,
{\red{\boxed{\large{\bold{\dfrac{a_1}{a_2} =\: \dfrac{b_1}{b_2} =\: \dfrac{c_1}{c_2}}}}}}
a
2
a
1
=
b
2
b
1
=
c
2
c
1
From this formula we get,
\sf a_1 =\: 1a
1
=1
\sf b_1 =\: 2b
1
=2
\sf c_1 =\: - 1c
1
=−1
\sf a_2 =\: (a - b)a
2
=(a−b)
\sf b_2 =\: (a + b)b
2
=(a+b)
\sf c_2 =\: - (a + b - 2)c
2
=−(a+b−2)
Then we get,
\implies⟹ \sf \dfrac{1}{a - b} =\: \dfrac{2}{a + b} =\: \dfrac{- 1}{- (a + b - 2)}
a−b
1
=
a+b
2
=
−(a+b−2)
−1
Now, by taking first two parts we get,
⇒ \sf \dfrac{1}{a - b} =\: \dfrac{2}{a + b}
a−b
1
=
a+b
2
By doing cross multiplication we get,
⇒ \sf 2(a - b) =\: a + b2(a−b)=a+b
⇒ \sf 2a - 2b =\: a + b2a−2b=a+b
⇒ \sf 2a - a =\: 2b + b2a−a=2b+b
\begin{gathered}\sf \implies \bold{\pink{a =\: 3b -----\: Equation\: no\: (3)}}\\ \end{gathered}
⟹a=3b−−−−−Equationno(3)
Again, by taking last two parts we get,
↦ \sf\dfrac{2}{a + b} =\: \dfrac{{\cancel{-}} 1}{{\cancel{-}} (a + b - 2)}
a+b
2
=
−
(a+b−2)
−
1
By doing cross multiplication we get,
↦ \sf 2(a + b - 2) =\: a + b2(a+b−2)=a+b
↦ \sf 2a + 2b - 4 =\: a + b2a+2b−4=a+b
↦ \sf 2a - a + 2b - b =\: 42a−a+2b−b=4
\begin{gathered}\sf \implies \bold{\pink{a + b =\: 4\: -----\: Equation\: no\: (4)}}\\ \end{gathered}
⟹a+b=4−−−−−Equationno(4)
Now, by putting the value of equation no (3) in the equation no (4) we get,
↛ \sf 3b + b =\: 43b+b=4
↛ \sf 4b =\: 44b=4
↛ \sf b =\: \dfrac{\cancel{4}}{\cancel{4}}b=
4
4
➠ \sf\bold{\purple{b =\: 1}}b=1
Again, by putting the value of b in the equation no (3) we get,
↛ \sf a = 3ba=3b
↛ \sf a = 3(1)a=3(1)
↛ \sf a =\: 3 \times 1a=3×1
➠ \sf\bold{\purple{a =\: 3}}a=3
\therefore∴ The value of a is 3 and the value of b is 1 .