3) If the roots of the given quadratic equation are real and equal then find
the value of 'm'.
(m-12) x2 + 2 (m-12) x + 2 = 0
Answers
Answer:
(m-12)x² +(m-12)x +2=0
we have to find Discriminant
that is
b²-4ac=0{because roots are real and equal}
(m-12)²-4(m-12)(2)=0
(m-12)²-8(m-12)=0
m²+12²-2(12)(m) -8m+96=0
{(a-b)²=a²+b²-2ab. or a²-2ab+b²}
m²+144-24m-8m+96=0
m²+240-32m=0
m²-32m+240=0
m²-12m-20m+240=0
m(m-12)-20(m-12)=0
(m-12)(m-20)=0
if m-12=0
then m=12
if m-20=0
then
m=20
please mark me as brainlist it is too important for me
Answer:
14
Step-by-step explanation:
To roots to be real and equal, discriminant of the equation must be 0.
Discriminant of ax² + bx + c = 0 is given by b² - 4ac. On comparing,
a = (m - 12), b = 2(m - 12), c = 2
⇒ discriminant = 0
⇒ [2(m - 12)]² - 4(2)(m - 12) = 0
⇒ 4(m - 12)² - 8(m - 12) = 0
⇒ 4(m - 12)[ (m - 12) - 2 ] = 0
⇒ 4(m - 12)(m - 14) = 0
⇒ m - 12 = 0 or m - 14 = 0
⇒ m = 12 or m = 14
But for m = 12, (m - 12)x² + 2(m - 12) + 2 = 0 is not true.
m = 14 must be preferred