3) If the two angles of a triangle are 30 'and 40', then measure the third angle.
Answers
Step-by-step explanation:
❒ Required Solution:
It is given that the two angles if the triangle are 30° and 40° respectively. And we are here to find the third angles with the help of the angle sum property (Sum if the angles of a triangle = 180°). So, using this property we can find the third angle.
So, Let's assume the third angle as x.
❍ According to the question :
\begin{gathered} \\ \tt \implies \: 30 {}^{ \circ} + 40{}^{ \circ} + x = 180{}^{ \circ} \\ \end{gathered}
⟹30
∘
+40
∘
+x=180
∘
\begin{gathered} \\ \tt \implies \: 70{}^{ \circ} + x = 180{}^{ \circ} \\ \end{gathered}
⟹70
∘
+x=180
∘
\begin{gathered} \\ \tt \implies \: x = 180{}^{ \circ} - 70{}^{ \circ} \\ \end{gathered}
⟹x=180
∘
−70
∘
\begin{gathered} \\ \implies \tt \: x = 110{}^{ \circ} \\ \end{gathered}
⟹x=110
∘
❒ V E R I F I C A T I O N :
Sum of the angles of the triangle = 180°
\begin{gathered}\\ \tt \implies \: 30 {}^{ \circ} + 40{}^{ \circ} + x = 180{}^{ \circ} \\ \end{gathered}
⟹30
∘
+40
∘
+x=180
∘
\begin{gathered} \\ \tt \implies \: 30 {}^{ \circ} + 40{}^{ \circ} + 110{}^{ \circ}= 180{}^{ \circ} \\ \end{gathered}
⟹30
∘
+40
∘
+110
∘
=180
∘
\begin{gathered}\\ \tt \implies \: 180{}^{ \circ} = 180{}^{ \circ} \\ \end{gathered}
⟹180
∘
=180
∘
\begin{gathered} \\ {\quad { \quad{ \quad{ \textbf{ \textsf{L.H.S = R.H.S}}}}}}\end{gathered}
L.H.S = R.H.S
Step-by-step explanation:
- let the third angle be=x
- given two angle of triangle =30' and 40'
- therefore the total angle of triangle=180'
- therefore 180=30and40=70
- 5.therefore 180-70=110
- therefore third angle=110