Math, asked by Louismerry, 5 months ago

3. If x = sint, y = cos 2t, then the value of d^2y/dx^2 when x=1/root3 is
plss fast

Answers

Answered by aryan073
7

Given :

\pink\star x=sint , y=cos2t

________________________________________

To find :

\star\sf{\dfrac{d^{2} y}{dx^2} =? \:  \: \: at \: x =\dfrac{1}{\sqrt{3}} }

________________________________________

Differentiation :

   \\ \star  \sf  \frac{dy}{dx} sinx = cosx \\  \\  \star \sf \:  \frac{dy}{dx} cosx =  - sinx

_______________________________________________

Solution :

 \:  \quad \bf \: x = sint \: ....(1) \\  \\  \quad \bf \: y = cos2t....(2)

➡ Double Differentiating equation (1) with respect to t

 \implies \sf \: x = sint \\  \\  \implies \sf \:  \frac{dx}{dt}  =  \frac{d}{dt} sint \\  \\  \implies \sf \:  \frac{dx}{dt}  = cost

  \\ \implies \sf \:  \frac{dx}{dt}  = cost \\  \\  \implies \sf \:  \frac{ {d}^{2}x }{ {dt}^{2} }  =  \frac{d}{dt} cost =  - sint \\  \\  \implies \sf \:  \frac{ {d}^{2} x}{ {dt}^{2} }  =  - sint \\  \\  \implies \  \boxed{ \sf{ \frac{ {d}^{2}x }{ {dt}^{2} }  =  - sint}}...(1)

Double Differentiating equation (2) with respect to t

 \implies \sf \: y = cos2t \\  \\  \implies \sf \:  \frac{dy}{dt}  =   \frac{d}{dt} cos2t \\  \\  \implies \sf \:  \frac{dy}{dt}  =  - sin2t \:  \times 2 \\  \\  \implies \sf \:  \frac{dy}{dt}  =  - 2sin2t \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dt}^{2} }  = - 2   \frac{d}{dt} sin2t \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dt}^{2} }  =  - 2cos2t  \times 2 \\  \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dt}^{2} }  =  - 4cos2t \\  \\  \implies \boxed{ \sf{ \frac{ {d}^{2}y }{ {dt}^{2} }  =  - 4cos2t}}......(2)

Dividing both equations (1) and (2) we get

  \\ \implies \sf \:  \frac{ \frac{ {d}^{2}y }{ {dt}^{2} } }{   \frac{ {d}^{2} x}{ {dt}^{2} } }  =  \frac{ - 4cos2t}{ - sint}

  \\ \implies \sf \:  \frac{ \frac{ {d}^{2} y}{ \cancel{ {dt}^{2}} } }{ \frac{ {d}^{2} x}{ \cancel{ {dt}}^{2} } }  =  \frac{  \cancel - 4cos2t}{ \cancel - sint}

 \\  \implies \sf \:  \frac{ {d}^{2}y }{ {dx}^{2} }  =   \frac{ 4(1 - 2 {sin}^{2} \frac{2t}{2} ) }{sint}

 \\  \implies \sf \:  \frac{ {d}^{2} y}{ {dx}^{2} }  =   \frac{  4(1 - 2 {sin}^{2}t)}{sint}

  \\ \implies \sf \:  \frac{ {d}^{2} y}{ {dx}^{2} }  = 4 \bigg( \frac{1}{sint}  - 2 \frac{ {sin}^{2} t}{sint}  \bigg)

  \\ \implies \sf \:  \frac{ {d}^{2}y }{ {dx }^{2} }  = 4(cosect - 2sint)

 \\  \implies \boxed{ \sf{ \frac{ {d}^{2} y}{ {dx}^{2} }  = 4(cosect - 2sint)}}

Put the given values of x in equation we get

 \\   \implies \sf \:  \frac{ {d}^{2} y}{ {dx}^{2} }  = 4 \bigg(cosec \frac{1}{ \sqrt{3} }  - 2sin \frac{1}{ \sqrt{3} }  \bigg)

  \\ \bigstar \boxed{ \sf{ \therefore \:  \frac{ {d}^{2} y}{ {dx}^{2} }  = 4 \bigg(cosec \frac{1}{ \sqrt{3} }  - 2sin \frac{1}{ \sqrt{3} } \bigg) }} \: is \: the \: answer

Additional information :

Formulas of cosx:

\\ \bf{(1) cos2x=cos^{2}x-sin^{2}x}

\\ \bf{(2) cos2x=1-2sin^{2}x}

\\ \bf{(3) cos2x=2cos^{2}x-1}

\\ \bf{(4) cos2x=\dfrac{1-tan^{2}x}{1+tan^{2}x}}

Similar questions