Math, asked by rb0385181, 3 months ago

3. In a circle of radius 17 cm, find the distance of a chord of length 16 cm from the centre​

Answers

Answered by brainlyofficial11
8

Given :-

  • radius of the circle = 17 cm
  • length of the chord = 16 cm

To Find :-

  • find the distance of the chord from the centre ?

Solution :-

we know that,

• A Perpendicular drawn from the centre of the circle to the chord ,bisects the chord.Hence,the point will be the mid point of the line segment

(see the refer diagram)

here,

  • O is the centre
  • AB is chord
  • OB is radius
  • C is the mid point of chord AB

➪ CB = AB/2

➪ CB = 16/2

➪ CB = 8 cm

now, in right angled triangle OBC

by Pythagoras theorem ;

  \bold{ :↦ \:{ (CB)}^{2}  +{ (OC)}^{2} = {(OB)}^{2} } \\  \\  \bold{:  ↦\:  {8}^{2} +  { (OC)}^{2}  =  {17}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \\  \\  \bold{: ↦ \: 64 + { (OC)}^{2}  = 289 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{:↦ \:{ (OC)}^{2} = 289 - 64 }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:↦ \:{ (OC)}^{2} = 225}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  ↦ \: OC =  \sqrt{225}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:↦ \:  \boxed{  \bold{OC = 15 \: cm  }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, the distance of the chord from the centre is 15 cm

Attachments:
Similar questions