Math, asked by mnjkumarka, 8 months ago

3. In an arithmetic sequence, the sum of
first 15 term is 495 and sum of first 25
terms is 1325. Find the sum of the first 'n'
terms.​

Answers

Answered by Ataraxia
11

GIVEN :-

  • Sum of first 15 terms of an arithmetic sequence , \sf S_{15} = 495
  • Sum of first 25 terms of an arithmetic sequence , \sf S_{25} = 1325

TO FIND :-

  • Sum of first n terms of the arithmetic sequence .

SOLUTION :-

    \sf S_n = \dfrac{n}{2}\times ( 2a+(n-1)d )

  • \sf S_{15}=\dfrac{15}{2} \times (2a+(15-1)d)

              \longrightarrow\sf \dfrac{15}{2}\times(2a+14d)=495\\\\\longrightarrow 15\times(2a+14d)=990\\\\\longrightarrow2a+14d=66\\\\\longrightarrow a+7d = 33  \ \ \ \  \ \ \ \ \ \ \  \   \ \....................(1)

  • \sf S_{25} =\dfrac{25}{2} \times (2a+(25-1)d)

             \longrightarrow\sf \dfrac{25}{2}\times(2a+24d)=1325 \\\\\longrightarrow 25\times (2a+24d)=2650 \\\\\longrightarrow 2a+24d = 106 \\\\\longrightarrow a+12d = 53 \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ .......................(2)

   Eq (2) - Eq (1) ,

     \longrightarrow\sf 5d = 20\\\\\longrightarrow d= 4

 Substitute the value of y in Eq (1) ,

    \longrightarrow\sf a+7\times4 = 33\\\\\longrightarrow a=33-28\\\\\longrightarrow a =5

 \longrightarrow\bf Sum \ of \ n \ terms = \dfrac{n}{2} \times{(2\times5 +(n-1)4 )

                                     \bf = \dfrac{n}{2}\times(10+4n-4)\\\\=\dfrac{n}{2}\times (6+4n)\\\\=\dfrac{6n+4n^2}{2}\\\\\underline{\underline{=2n^2+3n}}

Answered by tulsagopal99
0

Answer:

See on gloogle

Step-by-step explanation:

Similar questions