Math, asked by bablukumarskp4, 11 months ago

3. In quadrilateral ABCD, angleB = angleD= 90°,
AB = 7 cm, AC = 25 cm, CD = 20 cm.
Find the area of ABCD​

Answers

Answered by MaheswariS
21

\textbf{In $\triangle$ABC,}

AC^2=AB^2+BC^2

25^2=7^2+BC^2

625-49=BC^2

\implies\;BC^2=576

\implies\;BC=\sqrt{576}

\implies\;BC=24\;\text{cm}

\textbf{In $\triangle$ACD,}

AC^2=AD^2+CD^2

25^2=AD^2+20^2

625-400=AD^2

\implies\;AD^2=225

\implies\;AD=\sqrt{225}

\implies\;AD=15\;\text{cm}

\textbf{Area of $\triangle$ABC}

=\frac{1}{2}{\times}AB{\times}BC

=\frac{1}{2}{\times}7{\times}24

=7{\times}12

=84\;cm^2

\textbf{Area of $\triangle$ACD}

=\frac{1}{2}{\times}AD{\times}CD

=\frac{1}{2}{\times}15{\times}20

=15{\times}10

=150\;cm^2

\therefore\textbf{Area of quadrilateral ABCD}

=\text{Area of triangle ABC}+\text{Area of ACD}

=84+150

=234\;cm^2

Attachments:
Similar questions