Math, asked by princegehlawat94, 2 days ago

3. In the given figure, P and Q are points on the sides AB and AC respectively of a AABC. PQIBC a divides the AABC into 2 parts, equal in area. The ratio of PA:PB​

Answers

Answered by Mysteryboy01
0

Given \:  that \:  \\   \\  Area \:  of \:  the \:  Δ APQ  \\ =  Area \:  of \:  PQCB

That  \: means \:  \\  \\  Area \:  Δ ABC  \\ =  2 \:  Area  \: of \:  Δ APQ

Since  \: PQ ∥ BC

Therefore

 \frac{ Area \: of \: △ABC}{Area \: of \: △APQ}  = \frac{PA {}^{2} }{AB {}^{2} }  \\   \\ \frac{PA {}^{2} }{AB {}^{2} } =  \frac{ Area \: of \: △ABC}{Area \: of \: △APQ} = \frac{1}{2}  \\  \\  \frac{PA}{AB}  =  \sqrt{ \frac{1}{2} }

Therefore, \\  \\  PA:AB = 1:  \sqrt{2}

Similar questions