Math, asked by satyabhamagoli, 4 months ago

3. It " Sin aloha+cosec alpha=2, find
the value of sin n alpha+cosec n aloha n belong to t​

Answers

Answered by Anonymous
1

\large\underline{\purple{\sf Given :- }}

  • sin \alpha + cos\alpha = 2

\large\underline{\purple{\sf To\:\:Find :- }}

  • The value of sin^n \alpha + cosec^n\alpha

\large\underline{\purple{\sf Answer :- }}

It's given that sin a + csc a = 2 . And we are required to find the value of sin ⁿ a + cosⁿ a . So,

=> sin\alpha + cosec\alpha = 2 \\=> sin\alpha +\frac{1}{sin\alpha}=2 \\=> \dfrac{sin^2\alpha+1}{sin\alpha}=2 \\=> sin^2\alpha + 1 = 2sin\alpha \\=> sin^2\alpha-2sin\alpha+1=0\\=> sin^2\alpha-sin\alpha-sin\alpha+1 = 0 \\=> sin\alpha (sin\alpha -1)-1(sin\alpha-1)=0\\=> (sin\alpha-1)(sin\alpha-1)=0\\=> (sin\alpha-1)^2 \\=> \bf sin\alpha = 1,1

Hence the value of sin a is 1 .

So , now ;

=> sin^n\alpha + cosec^n\alpha = 1^n + 1^n \\=> sin^n \alpha + cosec^n\alpha = 1+1 \\=>\bf sin^n\alpha + cosec^n\alpha = 2

\Large{\boxed{\pink{\sf \purple{\bigstar}\:sin^n\alpha+cos^n\alpha = 2}}}

Answered by miteshdixit741
0

Answer:

sinα+cosecα=2

sinα+

sinα

1

=2

sin

2

α+1=2sinα

sin

2

α−2sinα+1=0

(sinα−1)

2

=0

sinα=1

hence,

cosecα=

sinα

1

=1

now,

sin

n

α+csc

n

α=(1)

n

+(1)

n

=1+1=2

Similar questions