Math, asked by SanidhyaSinghania, 1 year ago

3 log √m + 2 log ³√n = 1 ; find m^9 * n^4​

Answers

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\mathsf{3\,log\sqrt{m}+2\,log\sqrt[3]{n}=1}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{m^9n^4}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{3\,log\sqrt{m}+2\,log\sqrt[3]{n}=1}

\textsf{This can be written as,}

\mathsf{3\,log\,m^\frac{1}{2}+2\,log\,n^\frac{1}{3}=1}

\textsf{Using power rule, we get}

\mathsf{log\,m^\frac{3}{2}+log\,n^\frac{2}{3}=1}

\textsf{Using product rule, we get}

\mathsf{log\,_{10}\,m^\frac{3}{2}\,n^\frac{2}{3}=1}\;\;\;\;\textsf{(Take the base as 10)}

\implies\mathsf{m^\frac{3}{2}\,n^\frac{2}{3}=10}

\textsf{Raising bothsides to the power 6}

\mathsf{(m^\frac{3}{2}\,n^\frac{2}{3})^6=10^6}

\mathsf{(m^\frac{3}{2})^6\,(n^\frac{2}{3})^6=10^6}

\mathsf{(m^\frac{3{\times}6}{2})\,(n^\frac{2{\times}6}{3})=10^6}

\mathsf{(m^{3{\times}3})\,(n^{2{\times}2})=10^6}

\implies\boxed{\mathsf{m^9\,n^4=10^6}}

\underline{\textbf{Formulae used:}}

\boxed{\begin{minipage}{7cm}$\\\\\textbf{Product rule:}\;\mathsf{log_a(MN)=log_aM+log_aN}\\\\\textbf{Power rule:}\;\mathsf{log_aM^r=r\,log_aM}\\\\$\end{minipage}}

Similar questions