Math, asked by MAKizPERO, 1 year ago

3^(log x) -2^(log x)= 2^(log x+1) -3^(log x-1)

find the value of x​

Answers

Answered by ihrishi
0

Step-by-step explanation:

 {3}^{log \: x}  - {2}^{log \: x}  = {2}^{log \: x + 1}  - {3}^{log \: x - 1} \\ {3}^{log \: x} +  {3}^{log \: x - 1} =  {2}^{log \: x + 1} + {2}^{log \: x} \\ {3}^{log \: x} +  {3}^{log \: x} \times  {3}^{- 1} = {2}^{log \: x} \times {2}^{1} + {2}^{log \: x}  \\ {3}^{log \: x}(1 +  \frac{1}{3} ) = {2}^{log \: x}(2 + 1) \\ {3}^{log \: x}( \frac{4}{3} ) = {2}^{log \: x}(3) \frac{{3}^{log \: x}}{{2}^{log \: x}}  = 3 \times  \frac{3}{4}  \\ ( \frac{3}{2} )^{log \: x}  =  \frac{9}{4}  \\ ( \frac{3}{2} )^{log \: x}  =  (\frac{3}{2} )^{2}  \\ log_{10} \: x \:  = 2 \\ x =  {10}^{2}  \\ x = 100

Similar questions