Math, asked by raj34priyanshu, 10 hours ago

-3<-1/2-2x/3<5/6, x€R​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: - 3 &lt;  - \dfrac{1}{2}  - \dfrac{2x}{3}  &lt; \dfrac{5}{6}

can be further rewritten as

\rm :\longmapsto\: - 3 &lt;  - \dfrac{3}{6}  - \dfrac{4x}{6}  &lt; \dfrac{5}{6}

On multiply by 6, each term, we get

\rm :\longmapsto\: - 18 &lt;   - 3 - 4x &lt; 5

On adding 3 in each term, we get

\rm :\longmapsto\: - 18 + 3 &lt; 3  - 3 - 4x &lt; 5  + 3

\rm :\longmapsto\: - 15 &lt;  - 4x &lt; 8

On dividing each term by - 4, we get

\rm :\longmapsto\:\dfrac{15}{4}  &gt; x &gt;  - 2

can be further rewritten as

\rm :\longmapsto\: - 2 &lt; x &lt; \dfrac{15}{4}

\bf\implies \:x \:  \in \: \bigg( - 2, \: \dfrac{15}{4} \bigg)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

 \green{\boxed{\tt{ x &gt; y \: \rm\implies \: - x &lt;  - y}}}

 \green{\boxed{\tt{  - x &gt; y \: \rm\implies \: x &lt;  - y}}}

 \green{\boxed{\tt{   x  \geqslant  y \: \rm\implies \: -  x  \leqslant   - y}}}

 \green{\boxed{\tt{   x  \geqslant   - y \: \rm\implies \: -  x  \leqslant  y}}}

 \red{\boxed{\tt{  |x|  &lt; y \:  \: \rm\implies \: - y &lt; x &lt; y \: }}}

 \red{\boxed{\tt{  |x|  \leqslant  y \:  \: \rm\implies \: - y  \leqslant  x  \leqslant y \: }}}

 \red{\boxed{\tt{  |x - z|  \leqslant  y \:  \: \rm\implies \: z- y  \leqslant  x  \leqslant y + z \: }}}

 \red{\boxed{\tt{  |x - z|  &lt;   y \:  \: \rm\implies \: z- y   &lt;   x   &lt;  y + z \: }}}

Answered by HarshitJaiswal2534
0

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: - 3 &lt;  - \dfrac{1}{2}  - \dfrac{2x}{3}  &lt; \dfrac{5}{6}

can be further rewritten as

\rm :\longmapsto\: - 3 &lt;  - \dfrac{3}{6}  - \dfrac{4x}{6}  &lt; \dfrac{5}{6}

On multiply by 6, each term, we get

\rm :\longmapsto\: - 18 &lt;   - 3 - 4x &lt; 5

On adding 3 in each term, we get

\rm :\longmapsto\: - 18 + 3 &lt; 3  - 3 - 4x &lt; 5  + 3

\rm :\longmapsto\: - 15 &lt;  - 4x &lt; 8

On dividing each term by - 4, we get

\rm :\longmapsto\:\dfrac{15}{4}  &gt; x &gt;  - 2

can be further rewritten as

\rm :\longmapsto\: - 2 &lt; x &lt; \dfrac{15}{4}

\bf\implies \:x \:  \in \: \bigg( - 2, \: \dfrac{15}{4} \bigg)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

 \green{\boxed{\tt{ x &gt; y \: \rm\implies \: - x &lt;  - y}}}

 \green{\boxed{\tt{  - x &gt; y \: \rm\implies \: x &lt;  - y}}}

 \green{\boxed{\tt{   x  \geqslant  y \: \rm\implies \: -  x  \leqslant   - y}}}

 \green{\boxed{\tt{   x  \geqslant   - y \: \rm\implies \: -  x  \leqslant  y}}}

 \red{\boxed{\tt{  |x|  &lt; y \:  \: \rm\implies \: - y &lt; x &lt; y \: }}}

 \red{\boxed{\tt{  |x|  \leqslant  y \:  \: \rm\implies \: - y  \leqslant  x  \leqslant y \: }}}

 \red{\boxed{\tt{  |x - z|  \leqslant  y \:  \: \rm\implies \: z- y  \leqslant  x  \leqslant y + z \: }}}

 \red{\boxed{\tt{  |x - z|  &lt;   y \:  \: \rm\implies \: z- y   &lt;   x   &lt;  y + z \: }}}

Similar questions