Math, asked by sarkarmoumita250609, 5 hours ago

3^n+1 - 3^n / 3^n+2 - 3^n+1

plz help me..
don't give irrelevant answers​

Answers

Answered by abhi569
2

Answer:

1/3

Step-by-step explanation:

\sf{\implies{\dfrac{3^{n+1} - 3^n}{3^{n+2} - 3^{n+1}}}}\\\\\\\implies\sf{\dfrac{3^n\times 3^1 - 3^n}{3^n\times3^2- 3^n\times 3^1}  }\\\\\\\implies \sf{\dfrac{3^n (3^1 - 1)}{3^n(3^2 - 3^1)} }\\\\\\\implies \sf{\dfrac{3 - 1}{9 - 3} }\\\\\\\implies \sf{ \dfrac{2}{6}}\\\\\\\implies \sf{\dfrac{1}{3}}

Answered by Atlas99
26

 \sf\orange{\large\underline{Question}}

 \bf \pink{ \dfrac{ {3}^{n + 1}- {3}^{n} }{ {3}^{n + 2} - 3^{n + 1} }}

 \sf\red{\large\underline{Solution}}

 \bf\blue{\dfrac{ {3}^{n + 1}- {3}^{n} }{ {3}^{n + 2} - 3^{n + 1} }}

 \tt \green{\leadsto{\dfrac{2 \times 3^{n}}{3^{n+2}-3^{n+1}}}}

 \tt\red{\leadsto\dfrac{2 \times 3^{n} }{2 \times 3^{1 + n}}}

 \tt \orange{\leadsto\dfrac{ {3}^{n} }{ {3}^{1 + n}}}

 \large{\bf{\pink{\boxed\leadsto{\boxed{\dfrac{1}{3}\: \bf{or}\:0.33.}}}}}

Similar questions