Math, asked by frankenstein27, 4 months ago

3^n.3^2n+1
_________
9^n.3 ^n-1​

Answers

Answered by anindyaadhikari13
11

Required Answer:-

Given to evaluate:

  •  \sf \dfrac{ {3}^{n}  \times  {3}^{2n + 1} }{ {9}^{n} \times  {3}^{n - 1}  }

Solution:

We have,

 \sf \dfrac{ {3}^{n}  \times  {3}^{2n + 1} }{ {9}^{n} \times  {3}^{n - 1}  }

 \sf =  \dfrac{ {3}^{n}  \times  {3}^{2n + 1} }{ {( {3}^{2} )}^{n} \times  {3}^{n - 1}  }

 \sf =  \dfrac{ {3}^{n}  \times  {3}^{2n + 1} }{{3}^{2n} \times  {3}^{n - 1}  }  \:  \:  \blue{ \bigg( ({x}^{m})^{n}  =  {x}^{mn}  \bigg)}

 \sf =  \dfrac{ {3}^{n + 2n + 1} }{{3}^{2n + n - 1} }  \:  \:  \blue{ \bigg( {x}^{m} \times x^{n}  =  {x}^{m + n}  \bigg)}

 \sf =  \dfrac{ {3}^{3n + 1} }{{3}^{3n- 1} }

 \sf = {3}^{(3n + 1) - (3n - 1)} \:  \:   \blue{\bigg( \dfrac{ {x}^{a} }{ {x}^{b} }   =  {x}^{a - b} \bigg) }

 \sf = {3}^{2}

 \sf = 9

Hence, the simplified form of the expression is - 9.

Answer:

  • Simplified form is - 9.
Answered by vedmohod2007
0

Answer:

dgdfgfhg

Step-by-step explanation:

Similar questions