Math, asked by rashmisinghjehanabad, 11 months ago

(3)
Prove that : (1-sinA+cosA)^2 = 2 (1+cosA) (1-sinA)​

Answers

Answered by palak1904
1

you can check the ans in the above photo

hope it helps

pls mark me as brainliest

Attachments:
Answered by prajwal1697
1

\huge \underline \bold \green{QUESTION}:

prove \: that \: . \:  \:  {(1 -  \sin( \alpha )  +  \cos( \alpha ) )}^{2} =  \\ =  2(1 +  \cos( \alpha )  (1 -  \sin( \alpha ) )

__________________________

\huge \underline \bold \red{SOLUTION}:

 {(1 -  \sin( \alpha )  + cos (\alpha ))}^{2}  \\  =  >  {1}^{2}  +  {( \sin( \alpha )) }^{2}  +  {( \cos( \alpha )) }^{2}  + 2( -  \sin( \alpha )  +  \cos( \alpha )  -  \sin( \alpha )  \cos( \alpha ) ) \\  =  > 1 + 1 + 2(   -  \sin( \alpha )  +  \cos( \alpha )  -  \sin( \alpha )  \cos( \alpha ) ) \\  =  >  2 + 2(   -  \sin( \alpha )  +  \cos( \alpha )  -  \sin( \alpha )  \cos( \alpha ) ) \\ =  > 2( 1 -  \sin( \alpha )  +  \cos( \alpha )  -  \sin( \alpha )  \cos( \alpha ) ) \\  =  > 2((1 -  \sin( \alpha ) ) +  \cos( \alpha ) (1 -  \sin( \alpha ) )) \\  =  > 2(1 -  \sin( \alpha )) (1 +  \cos( \alpha ) ) \\  =  > hence \: proved

__________________________

 \underline \bold \red{formulas \: we \: used}: \\

 =  >  {(  \alpha  - \beta  +  \gamma )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  +  { \gamma }^{2}  + 2( -  \alpha  \beta  +  \alpha  \gamma  -  \beta  \gamma ) \\  =  >  { (\sin( \alpha )) }^{2}  +  {( \cos( \alpha ) )}^{2}  = 1

__________________________

hope it helps you

mark as

Brainliest please

Similar questions