Math, asked by akashkrthaku12345, 7 months ago

3 Prove that
sin A/(1 - cos A)=(cosecA + cot A)​

Answers

Answered by SujalSirimilla
1

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

\sf \bullet \ \ \dfrac{sinA}{1-cosA} =(cosecA+cotA)

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

LHS:

\to \sf \dfrac{sinA}{1-cosA}

⇒ Divide numerator and denominator by (1+cosA)

\to \sf \dfrac{sinA}{1-cosA} \times \dfrac{1+cosA}{1+cosA}

\to \sf \dfrac{sinA(1+cosA)}{(1-cosA)(1+cosA)}

Use (a - b)(a + b) = a² - b² to simplify denominator.

\to \sf \dfrac{sinA(1+cosA)}{(1-cos^2A)}

We know that 1 - cos²A = sin²A.

\to \sf \dfrac{\cancel{sinA}(1+cosA)}{(sin^\cancel{2}A)}

\to \sf \dfrac{(1+cosA)}{(sinA)}

⇒ Split the numerator.  \sf REMEMBER:\dfrac{a+b}{c} =\dfrac{a}{c} +\dfrac{b}{c}  \ OR \ \dfrac{a-b}{c} =\dfrac{a}{c} -\dfrac{b}{c}

\to \sf \dfrac{1}{sinA}+\dfrac{cosA}{sinA}

⇒ We know that 1/sinA = cosecA and cosA/sinA=cotA. Therefore:

\to \sf{\green{\dfrac{1}{sinA}+\dfrac{cosA}{sinA}=cosecA + cot A}} \bigstar

LHS=RHS.

THUS PROVED

TRIGONOMETRIC IDENTITIES:-

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

TRIGONOMETRIC RATIOS:-

</p><p>\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3} }{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp; 1 &amp; \sqrt{3} &amp; \rm Not \: De fined \\ \\ \rm cosec A &amp; \rm Not \: De fined &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm Not \: De fined \\ \\ \rm cot A &amp; \rm Not \: De fined &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}

Regards.

Sujal Sirimilla

ex-brainly star.

Similar questions